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A New Methodology Based on an lterative
Multiscaling for Microwave Imaging

Salvatore Caorsi, Member, |EEE, Massimo Donelli, Davide Franceschini, and Andrea Massa, Member, | EEE

Abstract—In thispaper, theproblem of thelocalization, shaping,
and dielectric permittivity reconstruction of dielectrictargetsisad-
dressed. The scatterersunder test areinhomogeneous cylinder s of
arbitrary cross sections probed by a set of incident electromag-
netic fields of TM type. The scattered field data are processed in
order to locate and roughly recover the objects’ shapes. The scat-
terers under test are then reconstructed with an increasing ac-
curacy by means of an iterative multiscaling procedure until sta-
tionary reconstructionsare achieved. The proposed method ispre-
sented jointly with a modified conjugate-gradient inversion pro-
cedurein order to minimizetherising cost function. However, this
methodology isindependent from the minimization algorithm, and
other and moreefficient algorithms can beused. In order to assess
the effectiveness of theiter ative multiscaling method, theresults of
several test cases (with and without noise) are presented and dis-
cussed in more detail.

Index Terms—Inver se scattering, iterative multiscaling method,
microwave imaging.

|. INTRODUCTION

HE problem of the localization and dielectric reconstruc-

tion of unknown targets from the measurement of the scat-
tered field is a topic of great interest in the framework of mi-
crowave imaging techniques (see [13]) based on inverse-scat-
tering methodol ogies [ 1] 3]. Moreover, many problems occur-
ring in various areas of applied science, such as biomedical en-
gineering [5], medicine [6], [7], nondestructive testing for the
industrial production [8], and buried-object detection and re-
construction [9]-11] can be mathematically formulated as in-
verse-scattering problems (see [12] for a complete overview).
However, severe limitations in obtaining accurate reconstruc-
tions are due to some intrinsic drawbacks of the inverse-scat-
tering problem [14], [15] jointly with the feasibility of effi-
cient illumination and measurements systems. By a mathemat-
ical point-of-view, three main topics must be preliminary ad-
dressed in order to define an efficient reconstruction procedure:
the uniqueness of the solution, the ill-posedness, and the in-
trinsic nonlinearity of the problems. Asfar as the uniquenessis
concerned, the dielectric profile of the object under test results
isuniquely defined only if pressing requirements (very difficult
to be achieved in rea situations) are verified [16], [17]. Gen-
erally speaking, the nonuniqueness and the ill-posedness draw-
backs of the inverse problem are due to the limited amount of
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information that can be collected. In fact, the number of in-
dependent data achievable from the measurements of the scat-
tered field is essentially limited [24]. It leads to the conclusion
that the space of the unknown is of finite dimension and, con-
sequently, only a finite number of parameters of the unknown
contrast can be accurately retrieved. In order to recover a solu-
tion of the inverse-scattering problem, a generalized solution is
then defined by searching for approximate solutions satisfying
additional constraints coming from the physics of the problem.
Thisadditional information is necessary in order to compensate
for the loss of information due to the imaging process [25]. To
thisend, asuitable cost functiona is defined, whose global min-
imum is assumed as the reconstructed profile.

On the other hand, due to the multiple scattering phenomena,
the inverse-scattering problem results in nonlinearity [15], as
well as arising cost function. The nonlinearity can be avoided
for certain limited real cases for which alinear relationship be-
tween the scattered field and obj ect under test can befound [18].
However, when multiple scattering effects are not negligible, as
isthe casefor large or highly contrasted objects, the use of non-
linear methodologies is mandatory. Many very effective opti-
mization strategies have been proposed. These techniques can
be grouped into deterministic (e.g., the modified gradient ap-
proach [19] or the distorted-Born iterative method [20]) or sto-
chastic methods (e.g., the simulated-annealing procedure [21]
or the genetic-algorithm-based approaches [22]).

This paper presents a method located in the framework of
optimization techniques and is aimed at better exploiting all
theavailableinformation. Analogously to standard optimization
techniques, the proposed methodology uses the additional in-
formation (expressed in the form of constraints on the solution)
at the start of the iterative procedure to construct approximate
solutions. However, successively the procedure iterates a sort
of zoom inside the investigation domain, introducing a sort of
“acquired” information about the scatterer under test (informa-
tion achieved at the previous reconstruction steps). This helps
to locate the scatterer inside the investigation domain and, at the
same time, to reallocate al the available a priori information in
order to achieve afiner reconstruction.

In the following sections, the proposed technique will be
widely illustrated. After the mathematical statement of the
problem and an analytical description of the iterative multi-
scaling procedure (Section 11), some numerical experiments
will be shown in Section Ill. Dielectric scatterers in various
shapes, dimensions, and permittivities will be considered
in order to accurately evaluate current potentialities of the
proposed method. Finally (Section 1V), some conclusions will
be drawn and possible future devel opments pointed out.
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Fig. 1. Imaging configuration.

Il. MATHEMATICAL FORMULATION

Let us consider a cylindrical object belonging to an investi-
gation domain D (Fig. 1). The target is illumined by a finite
set of incident electromagnetlc fields of TM type (E¥ (r) =
E? (xz,y)z; v = 1,...,V). The scattered electric field is
collected at M) different measurement points, located in an
observation domain D,,s externa to the investigation domain
(Eqvatt( ) = Egan (xm(v) ’ ynl(v))/i M)y = 1,... aM(’U))-

The material properties of the dielectric object are modeled
by means of an object function 7 (z, i) defined as follows:

O(w, Y) 1)

T(xay) = 57’($’y) -1- 27Tf60

with =,.(x, ) and o(z, y) being the dielectric permittivity and
electric conductivity, respectively. A lossless nonmagnetic
background medium, characterized by a dielectric permit-
tivity eo, is assumed. The interactions between scatterer and
probing electromagnetic fields are described by means of the
inverse-scattering equations [26]. In order to numerically solve
the addressed inverse-scattering problem, the inverse-scat-
tering equations are discretized according to the well-known
Richmond's procedure [27]. The investigation domain D is
discretized into NV square subdomains. The electric field and
object function are constant quantities in each subdomain
and are equa to EY,(z,,yn) and 7(xy,,y,), respectively.
Generally, in order to obtain a solution of the rising multi-
objective problem, a suitable cost function is defined as the
measure of the errors in the data equation and state equation
[26]. Successively the cost function is minimized according to
an optimization strategy [21], [29], [30], [31]. The proposed
methodology is independent from the definition of the cost
function and also from the minimization a gorithm. The method
is aimed at better resolving the object function distribution
by considering a multiresolution iterative process. At the first
step of the inversion procedure (s = 1), a “coarse” profile
of the object function distribution is looked for and the same
resolution level, R = 1 (R being the index of the resolution
level), is considered in any part of the investigation domain.
On the basis of the first reconstruction, a“zoom” (by using the
acquired a priori information about the scenario under test)
is then performed in the region where the unknown scatterer
has been detected. Iteratively, the procedure is repeated until a
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“stationary” reconstruction is achieved. In more detail, at each
step of the iterative process, by means of the acquired a priori
information (achieved at the previous steps), the scatterer under
test is localized and a zoomed square investigation domain
D(,_yy iscentered at

R
Z {xTL( ) (x’IL( >7y’rL(T>>}

r=1 Tl(r

Teny = Am , R=s-1
{T Ingeyr Yniry }
ny=1
R N( )
Z . {y xnm ; ynm) }
ooy = : @

(7‘
{ Ingeyr Yniny }
TL(T> =1

L(s—l) inside
L)
; 3\
f: Newy Priryea—1yT (xmw ’ y"w)
r=1lng)y=1
InaXn(T>:17..,7]\r(T> T xTL(T> ’ yn(r>
-9 M .
= 7 )
f Ny T (xn(r> ) yn(r>>
== max g T\T
{ Any=1,.., Niry ey Yngey )

©)

is defined as being (z»,,,, ¥n,,) the center of the square sub-
domain ({(,-sided). According to a multiresolution strategy, a
higher resolution level (R = s) isadopted only for the reduced
investigation domain. D(,_;) is discretized in the Nr square
subdomain /,.-sided (I, < (,._1y). The number of discretization
domainsis chosen equal to the essential dimension of the scat-
tered data. The upgraded permittivity profile is then retrieved
by minimizing the multiresolution cost function ®(*), defined
as shown in (4), at the bottom of the following page, where
Gag (Aq(T>,p(](,,)7’L(,,)) and Gy (An(r>7pn(r>"l(z,>) indicate the

discretized forms of the Green integrals given in [31, eq. (5)]
2

2
\/(-Tn(r> - -Tnl(v>) + (yn(ﬂ - yrn(U)) ’
2 2
Paryniry ) (xfz(r) - xn(r)) + (yq(ﬂ - yn(T)) , and
A, = (I)” the areaof the nth cell at the Rth resolution
level. Moreover, w is aweighting function, which is defined as
follows:

_ 07 If (xTL(T> 9 yTL(T>) ¢ D(S—l)
w (xn(rhyn(r)) = {1’ if (xnm’ynm) c D(sfl)- )

being py,

)M (w)

The multiresol ution procedureisiterated until a“ stationary con-
dition” for the quantitative imaging of the scatterer under test is
achieved (s = S,p¢). This condition hold when

lxgs—l—l) _ ‘Tgs)

s = x 100 3 < 7, (6)

|$g5+1)|
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Fig. 2 summarizes the iterative multiresol ution procedure by
means of a pictorial representation.

I11. NUMERICAL RESULTS

In this section, in order to asses the effectiveness of the pro-
posed method, the results of several numerical simulations are
reported. The behavior of the proposed method isillustrated by
considering three different class of scatterers: irregular homo-
geneous scatterers, circular homogeneous scatterers, and inho-
mogeneous scatterers.

A. Definitions

Before presenting the set of illustrative test cases, some quan-
tities, used in the numerical analysis, are defined. In order to
evaluatethelocal and global reconstruction accuracy, let uscon-
sider the following error figures:

NGO

R r
1 ()

=2

r=1

f
T (wnm ’ y"m) -7 (wnm ’ y"m)

Tret (xnm ’ y"m)
x100, R=S.: (9)

()
N(T) nery=1

where 7 and 7+ are the values of the actual and reconstructed
object function, respectively; N((j)) can range over the whole
investigation domain (j = tot), or over the area where the
actual scatterer is located (j = int), or over the background
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Fig. 2. Iterative multiresolution schema.

belonging to the investigation domain (j = ext). Moreover, let
us define the “local error”

f
IT(aj"(rwy"m) - (wnuwy"m)l
refl
T ('TTL(T> ? yTL(T>)

for each discretization cell of the investigation domain.

Xngy = x 100 (10)

é(s){T(xn(T>,yn(T>> EY, (xnm,ynm), r=1...,R=s ney=1...,Noy; v=1,..., V}

R Ny

r=1 ny=1
, Nery

+ iz Z w(x"uwy"m)

v=1r=1n(y=1
EY
N

ary=1

v E E v 2
Escatt (xrn(”) k) y’nl(z,> ) {w (xTL(T> k) yTL(T))T (xn(T> k) yn<r> ) Etot (-Tn(T> k) yn<r> ) GQ(I (A’N(T) k) pTL(T>’rn(U> )}

1}
inc (‘/En(r)vynu)) - Etot (‘/En(r)vynu))

2

+ Z {7‘ (.Tq(r) ’ y(l(r) )Etbot (‘Tq(r) ’ y(l(r) ) GQd (Ag(T) ? pq(T>n(T>> } |

(4)
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Fig. 3. Reconstruction of an off-centered square homogeneous cylinder. (a) Reference distribution. Reconstruction at intermediate steps: (b) s = 1, (c) s = 2.

(d) Final convergent profile (s = Sope = 3).
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Fig. 4. Reconstruction of an off-centered square homogeneous cylinder.

Behavior of the multiresolution cost function.

TABLE |

RECONSTRUCTION OF AN OFF-CENTERED SQUARE HOMOGENEOUS CYLINDER.

LOCATION AND SHAPE PARAMETERS

StepNo. (s 0 [ 1 [ 2 [ 3 1 4
e 0.0 | —0.220 | —0.380 | —0.397 | —0.397
Tin, 0.0 0.220 | 0.380 | 0.397 | 0.397
T 1.2 0.880 | 0.540 | 0430 | 0.420

TABLE I
RECONSTRUCTION OF AN OFF-CENTERED SQUARE HOMOGENEOUS
CYLINDER. ERROR FIGURES

Step No. (s) 1 2 3
Yeot 4.37 0.82 0.12
Ying 11.25 | 5.80 1.10
Yezt 3.52 0.20 0.01
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Fig.5. Reconstruction of an off-centered square homogeneous cylinder. Retrieved profilesat s = S, .+ when: (8) SNR = 30 dB, (b) SNR = 20 dB, () SNR =

10 dB, (d) SNR = 5 dB.

Asfar asthe assessment of the effectivenessin the qualitative
imaging of the geometry under test is concerned, the following
parameters are defined:

2 2
\/ [xgsopn _ xzef} n [ygsopn _ yzef}
p =

Ao
L(S )y — Lref
A= 100.
{ Lref } .

The presence of anoisy environmentsis also taken into account
by considering an additive Gaussian noise characterized by a
signal-to-noise ratio (SNR) defined as follows:

(11)

(12)

VoMo 2
Z Z Esbcatt (xm(z,) ’ ym(u)) l
SNR = 10log ¢ “=L2=1 ; (13)
DY “(xmw ) ym(w) l
v=1m=1

with 4 being a complex Gaussian random variable with zero
mean value.

B. Homogeneous Square Cylinder

In the first example, a lossess square scatterer L. =
0.8 Xp-sided, belonging to an inaccessible square investiga
tion domain (Lp = 2.4 )\g), is located at z™*f = —¢¢f =
0.4 Xg. The object is characterized by an homogeneous distri-
bution of the object function + = 0.5 + 50.0 [see Fig. 3(3)]. A
set of V' = 4 unit 7'M plane waves (whose incident angles are
givenby 6% = (v —1)n/2, v=1,...,V)illuminated thein-
vestigation domain. For each illumination, the scattered electric
field data have been collected at A = 21 equally spaced detec-
tors located on acircle p;, = 1.8 A¢ in radius belonging to the
observation domain. Asfar asthe inversion data are concerned,
the values of the scattered field EZ.,. (€m,: Um,,) have
been synthetically computed by using Richmond's procedure
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Fig. 6. Reconstruction of an off-centered square homogeneous cylinder (noisy data). Local error behavior when: () SNR. = 100 dB, (b) SNR = 20 dB,

(©) SNR = 10 dB, (d) SNR = 5 dB.

[27]. However, in order to avoid the so-called “inverse crime
problem” [28], a different discretization of the investigation
domain have been used for the direct procedure.

Fig. 3 shows the evolution of the reconstruction obtained by
means of the iterative multiscaling approach. At the first step
(s = 1), the investigation domain is partitioned into N; = 36
square subdomains (2 = 0.4 \g) and the guess dielectric distri-
bution is equal to the background (= = 79).

At theend of the minimization processrelativeto thefirst step
(performed by means of a conjugate-gradient-based procedure
and stopped when a*“ stationary condition” in the decrease of the
cost function isachieved (see Fig. 4), the scatterer isroughly lo-
calized (z8) = —yt = —0.22 \o) and shaped [see Fig. 3(b)].
A reduced investigation domain Ly = 1.76 g inside(Tablel)
is then defined.

At the second step, two different subgridding are used, the
finer resolution is used for the reduced investigation domain
found at the previous step. The reduced area is again dis-
cretized into N, = 36 square subdomains I = 0.29 Aq in
side. Fig. 3(c) shows the object profile retrieved at the end of
the minimization process of the second step. The multiscaling
iterative procedure is repeated until s = S, = 3 when fixed
thresholds (empirically stated and equa to n,, = 1%, n, = 1%,

and n;, = 5%) are reached. The unknown target results cor-
rectly located (=¥ = —0.397 Ao, ¥ = 0.397 \o) and the
occupation area of the actual object are estimated with a good
accuracy (Ls = 0.86 Ag). The method also provides a good
reconstruction, as confirmed from the values of the error fig-
ures (Table 1) which, at the final step, result in no greater than
1.5%.

For the same configuration, the effects of the noise have
been taken into account. To this end, a Gaussian noise has
been added to the data. The noise level ranges from 30 up to
5dB. Fig. 5 gives arepresentation of the reconstructed contrast
for different SNR. The fina convergent solutions for SNR
from 30 to 10 dB are reached after three scaling steps. Two
steps are necessary when SNR = 5 dB. As can be observed,
the multiscaling method appears to be reasonably stable with
respect to the noise. It results in that only extremely high noise
levelsyield some anomalies [see Fig. 5(c)—(d)], but the location
and shape of the scatterer are still visible in the reconstructed
profile.

Asfar asthe quantitative and qualitative imaging of the scat-
terer isconcerned, someinformation about the error distribution
can beinferred from Fig. 6 where the histograms of the behavior
of the local error are reported.
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Fig. 7. Reconstruction of an off-centered square homogeneous cylinder. Dependence of the: (a) reconstruction accuracy, (b) scatterer location, and (c) object

shaping from the scatterer’s dimensions.

Each bar of the histogram gives the percentage of cells for
which thelocal error x (being xiot, Xint, aNd Xex; related to the
whole scattering domain, inside and outside the object support,
respectively) isnegligibl e, between 3%—10%, 10%—20%, and so
on. For low noise levels (SNR > 20 dB), approximately 100%
of the cellsarewithout error (xio; < 3%) and theinternal local
error results are lower than 10% . When the SNR decreases, the
local error increases. The quantitative imaging does not result as
accurately, asconfirmedfromthegray-level representation given
inFig. 5(c) and (d). Almost every cell belongingtotheareaof the
actual scatterer is affected by an error. However, the local error
is less than 3% in a large amount of the cells outside the scat-
terer. Thisfurther confirms the effectiveness of the multiresolu-
tion procedure in locating and shaping the target under test. In
order to evaluate the effect of the scatterer’s dielectric permit-
tivity on the reconstruction process, some simulations have also
been performed. To this end, the dimensions and characteristics
of the observation domain have been assumed as those used in
thefirst simulation, while the value of therelative dielectric per-
mittivity of the object has been varied between ¢, = 1.2 and
e, = 3.0. The quantitative and qualitative imaging capabilities

of the proposed procedure can be inferred by observing Fig. 7
where the plots of ~.., p, and A are given. Asfar as the recon-
struction of the dielectric profile is concerned, a good accuracy
(101 < 8) isachieved in the whole range of variations of ¢,
and for each SNR [see Fig. 8(a)]. Starting from Re (7) = 1.2,
the location error strongly depends on the value of SNR, but, in
any case, p resultsarelower than 6% [seeFig. 8(b)]. Ontheother
hand, the error in estimating the occupation area of the scatterer
islimited to the range between 5%—20%. It assumes a constant
value (A = 9%) when the measurement environment is charac-
terized by alow noise level (SNR = 50 dB) [see Fig. 8(c)].

Tofurther assessthe capabilities of amicrowaveimaging pro-
cedure, it should be taken into account that the size of the object
under test could affect the validity of the inversion procedure.
Consequently, another set of simulations has been carried out
in order to evaluate the suitability of the multiscaling method-
ology to deal with smaller aswell larger (compared to the back-
ground wavelength) scatterers. The area of the square scatterer
(e, = 1.5) has been varied continuously in the range between
A =0.1)3to A= 2.8 )2 and various measurement conditions
have been taken into account (SNR = 0.5 <+ 100 dB).
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Fig. 8. Reconstruction of an off-centered square homogeneous cylinder (¢, = 1.5). Dependence of the: (a) reconstruction accuracy, (b) scatterer location, and
(c) object shaping from the scatterer’s dimensions.

1.0 Re{ T(x,y)} 00 LO Re{ T(x,y)} 0.0

(a) (b)

Fig. 9. Reconstruction of a circular homogeneous cylinder (Noiseless conditions). (a) Reference profile and (b) retrieved profile (s = S, = 3).

Fig. 8 shows a pictorial representation of the error figures .. strongly depends to the scatterer area. As an example,
for different values of the scatterer area and for various SNRs.  assuming SNR = 10 dB, the reconstruction error ranges from
StartingfromFig. 8(a), wecanobservethatwhen SNR > 25dB, 2% to 10%. As far as the behavior of p is concerned, Fig. 8(b)
the reconstruction error is lower than 2% whatever the object clearly indicates that the method is able to accurately locate
dimensions. On the contrary, when the signal to noiseincreases, the position of the scatterer (p < 0.010 when SNR > 10 dB).
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Fig. 10. Reconstruction of a circular homogeneous cylinder (Noisy conditions). Reconstruction at intermediate steps: (@) s = 1, (b) s = 2, and (c) s = 3.
(c) Final convergent profile (s = Sope = 4).

TABLE I
RECONSTRUCTION OF A CIRCULAR HOMOGENEOUS CYLINDER. BEHAVIOR OF
THE STATIONARY INDEXES AND ERROR FIGURES FOR MULTISCALING AND . B
STANDARD NONLINEAR INVERSE-SCATTERING PROCEDURE, RESPECTIVELY '

Multi-scaling Procedure | Single-step Procedure
StepNo. (s) | 1 [ 2 [ 8 | 4 ] 1

o 807 | 4.48 | 0.098 | 0.062 28.6

e 1481 | 038 | 5.8 | 0.989 21.3

) 40.56 | 21.35 | 11.33 | 3.18 46.4 N

Yeot 10.692 | 4.258 | 3.477 | 2.218 3.26 |

Yint 15.295 | 7.076 | 13.491 | 9.202 15.86

Yewt 10.535 | 4.162 | 3.134 | 1.979 2.59 ]

- | 1

Generally, the dimensions of the target are also correctly esti- 12 Re{ TGy} 0.0

. o
mated. The occupation ar.ea eerr results eq_ual to N_7_'5Z) inde- Fig. 11. Reconstruction of a circular homogeneous cylinder by means of a
pendently of scatterer’s dimensions and noisy conditions. standard nonlinear inverse-scattering method (noisy condition).
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Fig. 12. Reconstruction of atwo-layer square cylinder (Lo, = 1.2 g and L;,, = 0.4 Xg). (8) Reference profile and (b) retrieved profile (s = S,pt = 3).

C. Circular Cylinder

In this section, a dielectric profile, for which an analyt-
ical solution for the computation of scattered field is avail-
able, is considered. An off-centered (z3¢f = 2t = 0.3 Ao)
circular dielectric cylinder with a relative dielectric permit-
tivity e.(x,y) = 2.0,0.3 X in radius has been located in
the investigation domain. In the first set of numerical sim-
ulations, a noiseless environment has been assumed. During
the reconstruction process, Re {7 (x,y)} can range between
0.0-2.0. Fig. 9 shows a grey-level representation of the di-
electric distribution of the scatterer under test retrieved at the
final step (Sopy = 3) of the multiresolution procedure. The
actual distribution is aso shown [see Fig. 9(a)]. As can be
observed, the object is correctly located (a:c(sop” =0.301 Ao
and e, , = 0.298 \o), shaped (Ls,,,)/2 = 0.324 o), and
reconstructed (i = 9.022).

Successively, a Gaussian noise characterized by an SNR =
10 dB has been added to the smulated scattered field at the
measurement points. Fig. 10 shows the reconstructed results at
the end of each step of the multiresolution procedure. The final
(Sopt. = 4 being 7 < 71, 1 < ., and i < ) retrieved
dielectric profile is reported in Fig. 10(d).

As expected, the presence of the noise causes a deterio-
ration of the reconstruction accuracy (the maximum value
of the dielectric permittivity is estimated to be equal to
max(, ,)ep 16r(7,y)} = 2.1), however, the values of the error
figures (Table I11) result is acceptable aso taking into account
the high noise level.

For comparison purposes and in order to point out the real
advantages of the multistep approach over standard nonlinear
inverse-scattering methods, the same reconstruction has been
performed by using a single-step minimization with the con-
jugate gradient method. To this end, as far as the single-step
procedure is concerned, the investigation domain has been dis-
cretized with an homogeneous grid whose cell side is equal
to the finer discretization step of the multiscaling procedure
(I4 = 0.12 )\g). Ascan be observed (Fig. 11), the reconstructed
profile presents some artifacts and neither the center, nor the
shape of the scatterer under test are correctly estimated, as con-

TABLE 1V
RECONSTRUCTION OF TWO-LAYER SQUARE CYLINDER. ERROR FIGURES

Two-layered Square Cylinder

Lout =1.2X0 - Lip, =04 X | Loyt = 16X - Ly = 0.8 )¢
Yot 5.961 4.640
Yint 12.150 5.017
Yext 4.316 1.39

firmed in Table 111, where the error figures are reported and
compared with those achieved with the multistep procedure.
Moreover, the new methodology allows a significant computa-
tional saving. The computational effort for the new method is
substantially lower so that more accurate reconstruction results
can be achieved in approximately 1/4 of the time required for
the standard algorithm. In more detail, each iteration of the
standard algorithm took approximately 6 s on a Pentium 111
1.2 GHz (Linux OS) when an iteration of the multiscaling re-
quires only 0.12 s.

D. Hollow Square Scatterer

Finaly, the reconstruction of a slightly complex cylindrical
object istaken into account. Thetarget is an off-centered square
two-layer cylinder (z=°f = 4= — 0.2)\g). The inner square,
characterized by a permittivity equal to that of the background,
is 0.4 A\p-sided. The side of the outer cylinder (v(z,y) = 0.5)
isequal to 1.2 ). Asfar asthe noisy environment is concerned,
an SNR SNR = 30 dB has been assumed.

Fig. 12 shows the reference and reconstructed object func-
tion distribution inside the investigation domain, respectively.
As can be noted, the scatterer is accurately localized and quite
correctly shaped. However, the side of the square scatterer is
slightly overestimated aswell asthe value of Re () of theinner
cylinder. These conclusions are confirmed from the val ues of the
error figures reported in Table IV.

On the other hand, when the dimensions of the inner cylinder
(Lout = 1.6 Ao and L;;, = 0.8 A) increases, the quality of the
reconstruction of the scatterer under test alsoimproves (Fig. 13),
as confirmed from the error figures (Table 1V).
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Fig. 13. Reconstruction of atwo-layer square cylinder (L... = 1.6 Aq and L;,, = 0.8 Ag). (8) Reference profile and (b) retrieved profile (s = Sopt = 4).

IV. CONCLUSION

An innovative methodology for reconstructing the dielec-
tric permittivity distribution of cylindrical scatterers has been
presented. The procedure, based on a multilevel resolution al-
gorithm, is aimed at better exploiting the limited amount of
the information achievable from the scattering measurement.
To this end, a suitable iteratively defined (according to the in-
formation about the scatterer collected at the previous steps)
cost function is successively minimized by means of an opti-
mization method. A conjugate-gradient-based method has been
used, but, in principle, any kind of optimization technique could
be successfully adopted. The proposed approach, developed in
the spatial domain and under TM illumination conditions, has
been assessed by means of some test cases and the obtained
results have shown its capabilities in imaging simple objects,
even in strongly noisy environments. In more detail, numer-
ical simulations have been carried out to test the behavior
of the multiresolution procedure when some parameters (e.g.,
scatterer dimensions, dielectric permittivity, scatterer shapes,
etc.) of the scenario under test are changed. Results are quite
promising and indicate that the new methodology exhibits the
best features of the minimized algorithm (which, actualy, con-
stitutes a “black box” inside the overall system), but also addi-
tional propertiesin term of convergence rate, memory require-
ments, and reconstruction accuracy.

However, the proposed scheme must be further improved
by overcoming some current limitations. In particular, two key
points should be addressed: the occurrence of local minima
and the improvement of the stopping criterion (or “stationary
condition”). Asfar asthe“local minima” problemis concerned,
certainly the multiscaling method considerably reduces (with
respect to deterministic inverse-scattering methods) the risk
that the trial solution be trapped in a local minimum. How-
ever, there is no guarantee of avoiding local minima if the
minimization procedure is a deterministic algorithm. To this
end, a modified version of the multistep procedure is currently
under development, which considers a stochastic minimization
procedure. As far as the stopping criterion is concerned,
heuristic thresholds are currently taken into account. No deep

studies have been carried out about the dependence of these
parameters on the characteristics of the scenario under test. To
this end, an accurate analysisis currently performed in order to
define an analytic rule for the threshold definition by including
in an efficient way all the available a priori information.
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